Theory of Computation


Q241.

Which of the following problems are un-decidable?[MSQ]
GateOverflow

Q242.

Which one of the following is not decidable?
GateOverflow

Q243.

Let L(R) be the language represented by regular expression R. Let L(G) be the language generated by a context free grammar G. Let L (M) be the language accepted by a Turning machine M. Which of the following decision problems are undecidable ? I. Given a regular expression R and a string w, is w\in L(R)? II. Given a context-free grammar G, L(G)=\phi? III. Given a context-free grammar G, is L(G)=\Sigma* for some alphabet \Sigma? IV. Given a Turning machine M and a string w, is w\inL(M)?
GateOverflow

Q244.

Answer the following questions: Which of the following problems are undecidable?
GateOverflow

Q245.

Which of the following is/are undecidable? 1. G is a CFG. Is L(G) = \Phi? 2. G is a CFG. Is L(G) = \Sigma ^{*} ? 3. M is a Turing machine. Is L(M) regular? 4. A is a DFA and N is an NFA. Is L(A) = L(N)?
GateOverflow

Q246.

A single tape Turing Machine M has two states q0 and q1, of which q0 is the starting state. The tape alphabet of M is {0, 1, B} and its input alphabet is {0, 1}. The symbol B is the blank symbol used to indicate end of an input string. The transition function of M is described in the following table The table is interpreted as illustrated below. The entry (q1, 1, R) in row q0 and column 1 signifies that if M is in state q0 and reads 1 on the current tape square, then it writes 1 on the same tape square, moves its tape head one position to the right and transitions to state q1. Which of the following statements is true about M ?
GateOverflow

Q247.

Consider three decision problems P1, P2 and P3. It is known that P1 is decidable and P2 is undecidable. Which one of the following is true?
GateOverflow

Q248.

Consider the following sets: S1: Set of all recursively enumerable languages over the alphabet {0, 1}. S2: Set of all syntactically valid C programs. S3: Set of all languages over the alphabet {0, 1}. S4: Set of all non-regular languages over the alphabet {0, 1}. Which of the above sets are uncountable?
GateOverflow

Q249.

Which of the following problems is undecidable?
GateOverflow

Q250.

Which of the following decision problems are undecidable? I. Given NFAs N1 and N2, is L(N1)\capL(N2) = \phi? II. Given a CFG G = (N,\Sigma ,P,S) and a string x \in\Sigma ^*, does x \in L(G)? III. Given CFGs G1 and G2, is L(G1) = L(G2)? IV. Given a TM M, is L(M) = \phi?
GateOverflow